Главная · Windows · Описание платы arduino pro mini. Arduino Pro Mini — распиновка и характеристики. Схема и исходный проект. Распиновка плат ардуино Arduino board pinmaping Порты arduino pro mini

Описание платы arduino pro mini. Arduino Pro Mini — распиновка и характеристики. Схема и исходный проект. Распиновка плат ардуино Arduino board pinmaping Порты arduino pro mini

Arduino + два сервопривода + плата зарядки + плата повышающего преобразователя + старый аккумулятор + кучка радиодеталей + кусок фанеры + тумблер = сбылась мечта идиота!
Много текста, для тех, кто любит читать. Много спойлеров, для тех, кто любит читать «по диагонали». Видео, для тех, кто любит видео. Скетч, для тех, кто любит сразу скопировать и запустить «на коленке». Фото, фото, фото. Кот, для любителей котов.

Не совсем дисклеймер

Это мой первый проект, не считая мигания светодиодом, Hello world и т.п. По традиции надо предварительно посыпать голову пеплом, на предмет того, что код далек от совершенства и обязательно ввязаться в спор по этому поводу. А также по поводу частичной скопированности кода у другого проекта, попросить не бить сильно и т.д. Но этого не будет. Код идеален! Потому что работает, нравится мне и сделан для себя.
Интересующимся дам совет: не бойтесь, вступайте в бой, лопатьте горы кода, стройте свои мегапирамиды из разных операторов. Со временем придет и стиль, и утонченность, и идеал.
Пока в памяти контроллера есть место - вам ни чего не страшно. Упретесь в стену - будете оптимизировать. И это тоже развитие. Оно важно.
Большая книга по программированию на С - да, полезно. Но, на первых порах, гораздо полезнее иметь под рукой краткий справочник по командам и держать в закладках несколько ссылок на работу с простыми примерами, библиотеками и т.п., вроде , или той же Амперки.
И еще, мне очень помогают блок-схемы. Прямоугольник, ромбик, овал. Кто сталкивался - понимает. Делаю сейчас один проект - без блок-схемы никак. Для меня, лучше несколько дней рисовать - перерисовывать на бумаге, чтобы яснее представить себе весь ход работы программы, чем набросать кучу кода и зашиться в нем, т.к. я не обладаю умением охватить весь код силой своей программистской мысли, в виду малого опыта.
Желающим повторить или сделать по-своему – отвечу на все вопросы.
В пустые споры по моей письменной грамотности, стилю, дизайну, коду и нужности изделия и т.п., вступать не буду. Если допустил где-то в обзоре суровый косяк – исправлю или допишу.

Что такое «Самое бесполезное устройство» можете загуглить сами. Я натолкнулся на него случайно . Этот код и был взят за основу, т.к. сам по себе он не запустился, да и сценарии хотелось сделать свои.

Лирическое отступление

Говорят, после сорока, особенно, когда уже очень после сорока, нужно стараться «разминать» мозги. И что изучение языков - лучшая разминка. И не только в таком возрасте. К языкам я не очень, а журнал «Здоровье» как бы советует… В общем, решил я изучить что-то новое для себя. Электроника для меня не в новинку, хоть и забыл я ее уже по большей части, но вот программирование ни когда не было родным. Я его побаивался. Но тут совпало много знаков свыше: журнал «Здоровье», который рекомендует изучить что-то новое, давняя мечта разобраться (хоть немного) в программировании (хоть чего) и youtube, в котором только ленивый не рассказывает про то, как мигать светодиодом с помощью умной платы за доллар с копейками.
До этого я неплохо управлял миганием светодиода с помощью двух транзисторов, конденсатора и пары сопротивлений, но теперь, говорят, это не комильфо. Значит надо быть в тренде.


Очень мне понравилось это бесполезное, в прямом смысле слова, устройство. Увидел – влюбился. Хочу, и всё! Как детская мечта! Но возраст внес свои коррективы. Хочу именно сам сделать, а не купить. Тем более, что в продаже простые устройства. Я же натолкнулся на «интеллектуальное», а таких в продаже я не нашел. Тем более – надо делать!
И опять, Arduino. А я в нем ни бум-бум. Значит надо разбираться. Алиэкспресс в помощь. Начал с Ардуин. Понимал, что путь к изучению будет тернист и жертвы неизбежны. Поэтому заказал пять разных. Пусть себе горят, если что. Отладка схемы происходила на Uno от другого продавца. Но, так как в конечном устройстве оказалась именно эта плата - ее и вынес в заглавие.
Кроме ардуинок, заказал огромное количество всякого разного барахла, как ардуиносовместимого, так и околоардуинового. Здесь расскажу только о том, что пригодилось в данном изделии.

Arduino Pro Mini


Доставка быстрая, упаковка в виде стандартного антистатического пакета и конверта с внутренней пупырчатой поверхностью. Продавец общительный, русскоязычный.
На 328 чипе. 3,3 вольта, 8МГц. Почему именно так? Да по ошибке. Хотел на 5 вольт, 16МГц, а купил эту. Сам виноват. Впрочем, для данного проекта не критично - поставил лишний преобразователь напряжения. Собственно и всё. Огромных отличий от других Mini я не нашел. Фирменное отличие - черный текстолит(?) Из косяков: на плате не работает пин RAW. Но и это не остановило. Хотя, с ним мог бы сэкономить преобразователь на 3,3 В. гребенки не распаяны. Плата сделана добротно.
Почему так кратко? Потому что про этого продавца и его платы уже есть пристрастный (п.18). Желающие найдут легко. Пересказывать его не имеет смысла. Я в комментах к нему тоже вставил свои пять копеек. И с продавцом напереписывался вдоволь.


Сервопривод SG90


$3.2 за партию две штуки.
Описывать особенно нечего. Слабый сервопривод со средней точностью позиционирования, которая сильно зависит от скорости перемещения. Зато копеечный. Для привода крышки - с лихвой, для «руки» - на грани возможностей. Для работы нужно 5 вольт, но для управления достаточно и 3,3. Пробовал управлять через преобразователь и напрямую от ардуино - разницы нет. Поэтому преобразователь уровней сэкономил.


Контроллер зарядки и преобразователь питания


$2.28 за пять штук. С защитой. Пока заряжается - горит красный светодиод, окончание зарядки - синий светодиод. Обзор здесь был.


$0.50 за штуку. Доставка, правда, платная, но я брал в этом магазе еще целый ворох всякой всячины, поэтому доставка не напрягла. USB гнездо выпаял для облегчения веса))) На выходе выдает 5,12 вольт.





Брал в оффлайне. Немного туговат. Для облегчения работы сервы, можно было его разобрать, укоротить пружину или заменить на более слабую. Но лень победила. Поставил так. Правда пришлось в коде прописывать добавки к углу поворота сервы на больших скоростях.


TTL преобразователь


$1.5 за штуку. Вообще-то я заказал сначала . Он в два раза дешевле. Но, по каким-то странным причинам, он пал смертью храбрых. Я так и не понял, чем я его убил. По этой причине проект застопорился на месяц, пока не пришел новый, более продвинутый - не надо давить reset. Это ли не прогресс?


Остальное из запасников

Регулятор напряжения1117Т-3,3V в корпусе TO220, конденсаторы 1500,0х6,3 и 470,0х16, два конденсатора по 0,1 мкФ, белый светодиод и микропереключатель от детской машинки, резистор 220 Ом. Аккумулятор валялся несколько лет без дела. Когда-то я разобрал сгоревший (в прямом смысле) портативный DVD-проигрыватель. Из хорошего там только аккумуляторы и уцелели. Вот один из них и пригодился. Вольтаж 3,7 V, емкости я в маркировке не нашел.
Клеевой пистолет, резинка для денег, два крючка от… лифчика (спасибо супруге. Дорогая, я тебя люблю!), два мебельных шканта, четыре шурупа, четыре клейких отбойника для мебельных дверей, кусок макетной платы, провода, разъемы.


Сложнее обстояло дело с корпусом. Было перепробовано множество коробок. Коробка из пластика от часов Tissot оказалась хрупкой, частично картонной. Но металлические завесы от нее подошли. Одна даже в запасе осталась. Пробовал готовые корпуса от парфюма, коробку от вина, от конфет. В итоге, решил сделать сам.
Качественная фанера, скорее всего березовая, нашлась в детском наборе для выжигания. Ребенок вырос - набор остался. С одной стороны был нанесен рисунок, зато другая сторона выглядела прямо-таки сказать, отлично

Прямо-таки сказать, отлично

В школе у нас был трудовик. В возрасте. В общем и целом - замечательный человек. Его уважали. Когда мы проходили электричество, на примере батарейки, лампочки и ключа, он прочитал нам лекцию.
«В батарейке живет ток. Вот выходит он из плюса и пошел по проводам. Идет, идет, вдруг бац - ключ на пути. И ключ разомкнут. Ток понимает, что дальше идти некуда. Он развернулся и ушел в батарейку. И лампочка не горит. Замыкаем ключ. Ток опять пошел, дошел до ключа, прошел через него, прошел через лампочку и вернулся в батарейку. И лампочка горит, прямо-таки сказать, отлично.» С тех пор и есть такая фраза в лексиконе, как синоним чего-то неожиданно удачного.




Пробовал резать фанеру ножовкой, лобзиком - всё не то. Сколы, которые потом трудно убрать, не ровная кромка. Нашел выход - острый канцелярский нож. Замечательно прорезает половину фанеры с одной стороны, и половину с другой. Потом чуть-чуть наждачкой и всё в ажуре. Зато, при хорошей металлической линейке и постоянно остром лезвии, получается идеальный срез и ровная линия.
Конечно, не без косяков - под наклейкой Hand made скрывается банальная дырка. Просверлил по центру, для тумблера. А серва не влезла. Пришлось смещать тумблер в бок и закрывать дырку. Меня такие трудности не пугают.
Описывать каждый свой чих по изготовлению устройства не вижу смысла. Я опишу некоторые моменты. А уж имеющий руки - да сделает.
Коробку собрал на термоклей. Самого клея не жалел. Держится отменно. Не скрипит, не люфтит. Быстро, дешево и сердито. Да и вообще, как вы заметили, практически всё держится на этом клее. Рекомендую. Очень ускоряет процесс сборки. Микрик выключения приклеил изнутри на левую стенку - виднеется на фото немного.
Крышку прикрепил на завесу.

С завесой намучился. Много экспериментировал. Хотел, чтобы крышка располагалась именно сверху коробки, а не внутри. Даже согнул несколько вариантов скоб-завес из скрепок. По потом вспомнил, что в процессе экспериментов на глаза попались завесы из коробки часов Tissot. Такие добротные, швейцарские (китайские?).
Завеса вещь важная. Ее качество очень важно для общей внешней красоты устройства.
Основной тумблер нужен помягШе, тогда и работать будет полегШе.
Крышку возвращает в закрытое положение резинка. Ее не нужно выбирать очень жесткой - серва справится, но, при центральном расположении завесы, крышку будет перекашивать.
В случае с фанерой, покрытие лаком обязательно - пачкается сильно. Я применил бесцветный цапон-лак. Просто потому, что другого под рукой не оказалось.
Серву, которая управляет «рукой» лучше расположить по-другому. Не сбоку, а спереди от тумблера. Тогда «рука» может быть попроще в изготовлении - г-образная, вместо п-образной. Ширину коробки можно уменьшить и тумблер расположить по центру.
Серву крышки лучше развернуть на 180 градусов, тогда в коде проще будет ассоциировать градусы этой сервы с работой крышки. У меня наоборот, поэтому открывание - это уменьшение градусов. А у «руки» наоборот. И правильнее толкать крышку с той же стороны, с которой ее тянет назад резинка.
Коробку не стоит делать слишком маленькой. Будет не удобно пользоваться. А вот более плоской - допустимо. Коробка легкая и если она будет площе, будет устойчивее. Удобнее будет толкать тумблер пальцем не придерживая коробку.
Из двух кусков макетной платы сделал что-то типа шилда. Ардуину впаял без разъемов. Намертво. Мне не жалко.


А вот всю периферию сделал на разъемах. Так удобнее.
Конденсатор большой емкости по питанию ардуины (3,3 вольт) обязателен. Без него ардуина «виснет».
У меня нет сборочных чертежей устройства. Оно на столько простое, что можно применить много других простых решений, на которых строится вся механика. На видео, как моем, так и других подобных устройств, можно видеть применяемые варианты приводов.

#include #include Servo doorServo; //сервопривод крышки Servo handServo; //сервопривод руки Bounce bouncer = Bounce(12, 40); //создаем экземпляр класса Bounce для 12 вывода тумблера int pos = 0; //переменная начальной позиции int pos1door = 70; //начальное положение сервопривода крышки int pos2door = 30; //конечное положение сервопривода крышки int pos1hand = 10; //начальное положение сервопривода руки int pos2hand = 160; //конечное положение сервопривода руки int r; //случайное число, от которого зависит вариант выключения тумблера #define LED_PIN 11 // номер выхода,подключенного к светодиоду int ledState = LOW; // этой переменной устанавливаем состояние светодиода long previousMillis = 0; // храним время последнего переключения светодиода #define INTERVAL 30UL // интервал между включение/выключением светодиода void setup() { pinMode(LED_PIN, OUTPUT); pinMode(12, INPUT); //переключаем 12 вывод в режим входа digitalWrite(12, 1); //включаем на нем подтягивающий резистор Serial.begin(9600); //установка порта на скорость 9600 бит/сек. Для отладки. Потом можно убрать. doorServo.attach(9); //назначаем сервопривод крышки на пин 9 handServo.attach(10); //назначаем сервопривод руки на пин 10 doorServo.write(pos1door); //устанавливаем в начальную позицию сервопривод крышки handServo.write(pos1hand); //устанавливаем в начальную позицию сервопривод руки } void loop() { if (bouncer.update()) { if (bouncer.read()==0) { //если кнопка нажата { r = random(0,11); //генерируем случайное число jn 0 до 10 Serial.println®; if (r == 0) { move_0(); } //вызов функции по случайному числу else if (r == 1) { move_1(); } else if (r == 2) { move_2(); } else if (r == 3) { move_3(); } else if (r == 4) { move_4(); } else if (r == 5) { move_5(); } else if (r == 6) { move_0(); } else if (r == 7) { move_1(); } else if (r == 8) { move_4(); } else if (r == 9) { move_3(); } else if (r == 10) { move_0(); } } } } } // Библиотека функций. Общий принцип: открыть крышку - высунуть руку и выключить тумблер - убрать руку - закрыть крышку //а уж вариантов как это красиво обставить................ void move_0(){ //простой вариант: открыли-выключили-закрыли //открываем крышку for(pos = pos1door; pos >= pos2door; pos -=3) { doorServo.write(pos); delay(15); } //высовываем руку for(pos = pos1hand; pos <= pos2hand; pos +=3) { handServo.write(pos); delay(15); } //убираем руку for(pos = pos2hand; pos >= pos1hand; pos -=3) { handServo.write(pos); delay(15); } //закрываем крышку for(pos = pos2door; pos <= pos1door; pos +=3) { doorServo.write(pos); delay(15); } } void move_1(){ //простой вариант 2: открыли-выключили-закрыли //открываем крышку for(pos = pos1door; pos >= pos2door; pos -=1) { doorServo.write(pos); delay(15); } delay(1000); //высовываем руку for(pos = pos1hand; pos <= pos2hand; pos +=1) { handServo.write(pos); delay(15); } //убираем руку for(pos = pos2hand; pos > <= pos1door; pos +=5) { doorServo.write(pos); delay(15); } } void move_2(){ //задумчивый вариант 2: приоткрыли-закрыли-открыли-выключили-закрыли //открываем крышку for(pos = pos1door; pos >= pos2door+15; pos -=5) { doorServo.write(pos); delay(15); } delay(1000); //закрываем крышку for(pos = pos2door+15; pos <= pos1door; pos +=5) { doorServo.write(pos); delay(15); } delay(1000); //открываем крышку for(pos = pos1door; pos > <= pos2hand+2; pos +=5) { handServo.write(pos); delay(15); } //убираем руку for(pos = pos2hand+2; pos >= pos1hand; pos -=5) { handServo.write(pos); delay(15); } //закрываем крышку for(pos = pos2door; pos <= pos1door; pos +=5) { doorServo.write(pos); delay(15); } } void move_3(){ //дерганый вариант: приоткрыли-подергали - закрыли-открыли-выключили-закрыли //открываем крышку for(pos = pos1door; pos >= pos2door+15; pos -=1) { doorServo.write(pos); delay(50); } delay(500); //дергаем крышку for(int i=1; i <=8; i ++) { doorServo.write(pos2door+18); delay(80); doorServo.write(pos2door+15); delay(80); static unsigned long previousMillis = 0; if(millis() - previousMillis > INTERVAL) { previousMillis = millis(); digitalWrite(LED_PIN,!digitalRead(LED_PIN)); } } delay(500); //закрываем крышку for(pos = pos2door+15; pos <= pos1door; pos +=1) { doorServo.write(pos); delay(50); } delay(1000); //открываем крышку for(pos = pos1door; pos >= pos2door; pos -=5) { doorServo.write(pos); delay(15); } //высовываем руку for(pos = pos1hand; pos <= pos2hand+2; pos +=5) { handServo.write(pos); delay(15); } //убираем руку for(pos = pos2hand+2; pos >= pos1hand; pos -=5) { handServo.write(pos); delay(15); } //закрываем крышку for(pos = pos2door; pos <= pos1door; pos +=5) { doorServo.write(pos); delay(15); } } void move_4(){ //открываем крышку delay(2000); for(pos = pos1door; pos >= pos2door+15; pos -=5) { doorServo.write(pos); delay(50); } delay(500); digitalWrite(LED_PIN,!digitalRead(LED_PIN)); delay(2000); digitalWrite(LED_PIN,!digitalRead(LED_PIN)); delay(500); //закрываем крышку for(pos = pos2door+15; pos <= pos1door; pos +=5) { doorServo.write(pos); delay(50); } delay(1000); //открываем крышку не полностью for(pos = pos1door; pos >= pos2door+15; pos -=1) { doorServo.write(pos); delay(50); } delay(2000); //открываем крышку полностью for(pos = pos2door+15; pos >= pos2door; pos -=1) { doorServo.write(pos); delay(15); } //высовываем руку for(pos = pos1hand; pos <= pos2hand-35; pos +=1) { handServo.write(pos); delay(35); } delay(1000); //высовываем руку for(pos = pos2hand-35; pos <= pos2hand+3; pos +=4) { handServo.write(pos); delay(15); } //убираем руку for(pos = pos2hand+3; pos >= pos1hand; pos -=7) { handServo.write(pos); delay(15); } //закрываем крышку for(pos = pos2door; pos <= pos1door; pos +=7) { doorServo.write(pos); delay(15); } delay(500); //открываем крышку for(pos = pos1door; pos >= pos2door+20; pos -=5) { doorServo.write(pos); delay(50); } delay(300); digitalWrite(LED_PIN,!digitalRead(LED_PIN)); delay(500); digitalWrite(LED_PIN,!digitalRead(LED_PIN)); delay(100); //закрываем крышку for(pos = pos2door+20; pos <= pos1door; pos +=1) { doorServo.write(pos); delay(50); } } void move_5(){ //возня for(int i=1; i <=2; i ++) { for(pos = pos1door; pos <= pos1door+45; pos +=5) { doorServo.write(pos); delay(50); } for(pos = pos1door+45; pos >= pos1door; pos -=5) { doorServo.write(pos); delay(50); } delay(100); } //дергаем крышку for(int i=1; i <=3; i ++) { doorServo.write(pos1door-6); delay(80); doorServo.write(pos1door-3); delay(80); } delay(300); //открываем крышку digitalWrite(LED_PIN,!digitalRead(LED_PIN)); for(pos = pos1door; pos >= pos2door+25; pos -=5) { doorServo.write(pos); delay(50); } delay(500); //открываем крышку digitalWrite(LED_PIN,!digitalRead(LED_PIN)); for(pos = pos2door+25; pos >= pos2door+10; pos -=5) { doorServo.write(pos); delay(50); } //открываем крышку digitalWrite(LED_PIN,!digitalRead(LED_PIN)); for(pos = pos2door+10; pos >= pos2door-5; pos -=2) { doorServo.write(pos); delay(50); } //высовываем руку for(pos = pos1hand; pos <= pos2hand-35; pos +=9) { handServo.write(pos); delay(35); } delay(1000); //убираем руку for(pos = pos2hand-35; pos >= pos2hand-70; pos -=1) { handServo.write(pos); delay(15); } delay(1000); //высовываем руку for(pos = pos2hand-70; pos <= pos2hand+3; pos +=9) { handServo.write(pos); delay(15); } delay(50); //убираем руку for(pos = pos2hand+3; pos >= pos1hand; pos -=7) { handServo.write(pos); delay(15); } //закрываем крышку digitalWrite(LED_PIN,!digitalRead(LED_PIN)); for(pos = pos2door-5; pos <= pos1door+3; pos +=5) { doorServo.write(pos); delay(50); } }

Скетч, предлагаемый автором из ссылки в начале обзора, у меня не запустился. А я еще был не тот профи, каковым являюсь сейчас)))))))
В общем, начал разбираться. В итоге, на основе чужого, сделал свой скетч. Добавил защиту от дребезга. Проще, конечно, было поставить резистор с конденсатором, но уж очень хотелось попрограммировать.


В принципе, схема понятна из скетча. Но я ее все-таки приведу. Уж простите за качество - как смог. Плату преобразователя взял немного другую - в «анфас» не нашел нужной.


Особых пояснений по скетчу нет. Разве что момент добавления угла поворота на несколько градусов, когда скорость сервы большая. Заметил, что если «рука» выскакивает резко, то она не выключает тумблер. Явно это от низкого качества сервоприводов. Поэтому нужно добавить немного к углу вылета «руки». Подозреваю, что при повторении эти добавочные градусы могут быть у вас другими. Зависит от плеча «руки».
И про программы. Пока шесть программ. Вызываются через генерацию случайного числа. Причем простые программы (0, 1 и 2) вызываются чаще обычных. Всем моим тестировщикам показалось, что более навороченные программы должны быть редким приятным бонусом, тогда появляется некая интрига. Так и сделал.
Для любителей цифр - размер коробки: длина - 150мм, высота - 70мм, ширина - 65мм.

Youtube сильно ухудшил качество. Если нужно глянуть в оригинале - качайте. 21 МБ.
Здесь в скетч внесено изменение, позволяющее увидеть все шесть программ по очереди, чтобы вы имели представление обо всех. В жизни, как я писал, у них псевдо-случайный порядок.



Зарядка производится через микро-USB обычным зарядником от мобильного. Автономность сильно зависит от частоты использования. Иногда несколько суток, а иногда за день «убиваю».


Напоследок.
Проект, тем не менее, вполне можно дорабатывать и дорабатывать. Можно придумывать новые сценарии. Можно добавить пищалку и озвучить устройство. Например пусть «рычит», типа злится, если время между выключением и включением тумблера очень короткое. Можно, как в исходном проекте, добавить перемещение коробочки в разные стороны.
Можно встроить проверку случая, когда «рука», по какой-то причине, не выключила тумблер (например на холоде, серва не дотягивает до нужного угла совсем немного) и скорректировать угол на один раз, написав специально для такого случая какую-нибудь «нервную» программу выключения. Можно поставить Nano и программировать через USB, не разбирая каждый раз устройство.

Да и вообще – можно сделать аккуратнее. Много всяких можно. Собственно именно этим я и предлагаю заняться тем, кого это заинтересовало.
Может я упустил что-то. Крупноват обзор получился для такого простого устройства. Вот за это могу извиниться.
Теперь кот и спасибо за то, что дочитали до конца.

Инструкция

Сначала пара слов о самом программаторе. Купить такой можно за 2 доллара в любом китайском интернет-магазине.
Разъём типа USB-A используется, понятно, для подключения программатора к компьютеру.
ISP-соединитель нужен для подключения к программируемой плате.
Джампер JP1 контролирует напряжение на VCC выводе ISP-коннектора. Оно может быть 3,3 В или 5 В. Если целевое программируемое устройство имеет собственный источник питания, нужно убрать перемычку.
Джампер JP2 используется для перепрошивки самого программатора; в данной статье не рассматривается.
Перемычка JP3 нужна, если тактовая частота целевого устройства ниже 1,5 МГц.
Два светодиода показывают: G - питание подаётся на программатор, R - программатор соединён с целевым устройством.

Подключим программатор к USB-порту компьютера. Скорее всего, через какое-то небольшое время операционная система сообщит, что ей не удалось найти драйвер для данного устройства.
В этом случае скачаем драйвер для программатора с официального сайта http://www.fischl.de/usbasp/. Распакуем архив и установим драйвер стандартным способом. В диспетчере устройств должен появиться программатор USBasp. Теперь программатор готов к работе. Отключаем его от компьютера.

Воспользуемся макетной платой и соединительными проводами - это будет быстро и надёжно. Соединяем разъём программатора с выводами на Arduino Pro Mini согласно приведённой выше схеме.

Открываем среду разработки Arduino IDE. Выбираем нужную плату через меню: Инструменты -> Плата -> Arduino Pro or Pro Mini (Tools -> Board -> Arduino Pro or Pro Mini).
Нужно также выбрать тип микроконтроллера, который задаётся через меню Инструменты -> Процессор. У меня это ATmega 168 (5V, 16 MHz). Данные параметры обычно написаны на корпусе микроконтроллера.

Выберем тип программатора: Инструменты -> Программатор -> USBasp (или Tools -> Programmer -> USBasp).

Откроем скетч, который хотим загрузить в память микроконтроллера. Для примера пусть это будет мигание светодиодом: Файл -> Образцы -> 01. Basics -> Blink.
Подключаем программатор с подключённым к нему Arduino Pro Mini к компьютеру.
Теперь, для того чтобы загрузить скетч в Ардуино с помощью программатора, можно поступить несколькими способами.
1) Через меню Файл -> Загрузить через программатор;
2) используя сочетание клавиш Ctrl + Shift + U;
3) зажав клавишу Shift, нажать на кнопку со стрелкой вправо, которая обычно используется для загрузки скетча в память Ардуино стандартным способом.
Всё, программа "залита" в память микроконтроллера.

В жизни начинающего ардуинщика рано или поздно наступает момент, когда хочется сэкономить на размере своего изделия, не жертвуя при этом функциональностью. И тогда Arduino Pro Mini - отличное для этого решение! За счёт того, что у этой платы отсутствует встроенный USB-разъём, она в полтора раза меньше Arduino Nano. Но для того, чтобы её запрограммировать, придётся приобрести дополнительный - внешний - USB-программатор. О том, как «залить» написанную программу в память микроконтроллера и заставить Arduino Pro Mini работать, и пойдёт речь в этой статье.

Инструкция по программированию Arduino Pro Mini программатором

Нам понадобится:

  • соединительные провода (рекомендую вот такой набор проводов);
  • компьютер c Arduino IDE.

1 Программатор для Arduino

Сначала пара слов о самом программаторе. Купить такой можно за 2 доллара в любом китайском интернет-магазине, например, в этом .

  • Разъём типа USB-A используется, понятно, для подключения программатора к компьютеру.
  • ISP-соединитель нужен для подключения к программируемой плате.
  • Джампер JP1 контролирует напряжение на выводе VCC ISP-коннектора. Оно может быть 3,3 В или 5 В. Если целевое программируемое устройство имеет собственный источник питания, нужно убрать перемычку.
  • Джампер JP2 используется для перепрошивки самого программатора; в данной статье этот вопрос не рассматривается.
  • Перемычка JP3 нужна, если тактовая частота целевого устройства ниже 1,5 МГц.
  • Светодиоды показывают: G - питание подаётся на программатор, R - программатор соединён с целевым устройством.

2 Установка драйвера для программатора

Подключим программатор к USB-порту компьютера. Скорее всего, через какое-то небольшое время операционная система сообщит, что ей не удалось найти драйвер для данного устройства.


В этом случае скачаем драйвер для программатора с официального сайта . Распакуем архив и установим драйвер стандартным способом. В диспетчере устройств должен появиться программатор USBasp. Теперь программатор готов к работе. Отключаем его от компьютера.


Если вы испытываете трудности с установкой драйвера для USBasp программатора, то вам поможет статья

Введение

Приветствую Вас, читатели нашего ресурса. Сегодня мы поговорим об одном контроллере из серии Arduino, а именно об Arduino Pro Mini. Это маленький, компактный контроллер, имеющий все преимущества Arduino, но при этом очень компактный, можно сказать самый маленький из всех существующих Arduino контроллеров на данный момент. Многих так же привлекает и цена его Китайский копий, а стоят они от одного до двух долларов за штуку (местами и того меньше), что так же заставляет задуматься об его приобретении. Но существует и одна проблема, его не так-то уж и просто прошить, особенно Китайские копии, которые оснащают процессором Atmel ATmega168P, которыми некогда не оснащали официальные контроллеры Arduino Pro Mini и как следствие Arduino IDE отказывается их прошивать, сообщая о неправильной сигнатуре процессора.

Вот об этом мы сегодня и поговорим. Как прошить, что для этого нужно, ну и как заставить Arduino IDE работать с китайскими копиями.

Что для этого нужно?

Arduino Pro Mini очень компактный, а компактность требует жертв и жертва это - USB интерфейс который полностью выкосили в данном контроллере т.е. подключить Pro Mini к компьютеру напрямую у вас не получится и как следствие для этого понадобится либо специальный переходник USB в TTL или другой контроллер Arduino.

  • Первый способ. Прошиваем через адаптер USB в TTL - нужен сам адаптер в количестве одной штуки.
  • Второй способ. Прошиваем через Arduino UNO - нужна Arduino UNO, но не простая, а в классическом исполнении, это та Arduino, в которой процессор выполнен в DIP корпусе и вставлен в черный разъем.
  • Третий способ. Прошиваем через SPI интерфейс - нужна любая Arduino: UNO, Nano, Mega, Leonardo - не важно, главное чтобы был USB разъем для подключения к ПК.

Первый способ. Прошиваем через адаптер USB в TTL

Первым и самым простым способом загрузить свой скетч в Arduino Pro Mini - это приобрести специальный адаптер USB в TTL или как его называют UART переходник. Как правило, этот переходник это и есть та часть, которую вырезали из Arduino Nano, превратив ее в Arduino Pro Mini. Стоимость подобных переходников копеечная, а выбор и того больше. Китайцы наштопали их столько, что глаза разбегаться какой из них выбрать. При этом цена сего девайса не более одного вечно зеленого. После того как вы соедините Pro Mini и UART переходник проводами или шлейфом, остаётся только воткнуть его (переходник) в ПК, установить драйвер (не для всех переходников они требуются) и на этом собственно все. Ваш ПК определит переходник как очередной COM-порт, который появляется при подключении любой Arduino к ПК. Выбираете его, плату, с которой будете работать (Arduino Pro Mini) и спокойно загружаете свой скетч.

Единственным нюансом в данных переходниках, является наличие или отсутствие контактов RST или DTR. Рекомендую покупать переходники, на которых эти контакты есть. Они значительно упрощают жизнь и делают процесс прошивки беспроблемным. Если же вы купили уже переходник, на котором подобных контактов нет, то при каждой загрузке скетча в Arduino вам придется нажимать на кнопку Reset, что не всегда получается сделать вовремя, и это вносит свои неудобства.

Подключение переходник вы можете посмотреть по таблице ниже:

Второй способ. Прошиваем через Arduino UNO

Для этого способа нам понадобиться классическая Arduino UNO. Классическая эта та, в которой корпус микросхемы выполнен в DIP корпусе и вставлен в специальный разъем. Вот эту микросхему нам надо аккуратно поддеть отверткой. Тут важно не сломать процессор, поддевайте аккуратно, не погнув ноги.

Arduino UNO. Процессор выполнен в DIP корпусе.

Аккуратно поддеваем и вытаскиваем процессор отверткой.

После того как мы вытащили процессор из Arduino UNO мы по сути получили тот самый переходник USB в TTL, осталось только соединить проводами наш новый переходник и Arduino Pro Mini по следующей схеме:

Arduino UNO (без процессора)
Arduino Pro Mini
RX
RX
TX
TX
GND
GND
5V
VCC
RST
RST

После того как вы соединили две Arduino воедино, можно приступать к прошивке Arduino Pro Mini. Подключаем Arduino UNO по USB к ПК. Выбираем в настройках Arduino IDE COM-порт, указываем, что мы теперь работаем не с Arduino UNO, а с Arduino Pro Mini и все, заливаем наши скетчи. Способ довольно интересный, если вы не боитесь испортить Arduino и рядом не оказалось переходника USB в TTL.

Третий способ. Прошиваем через SPI интерфейс

Третьим и самым неудобным способом загрузить свой скетч в Arduino Pro Mini это прошить его при помощи ICSP интерфейса. Данный интерфейс присутствует на большинстве плат Arduino. Основные контакты данного интерфейса выведены на порты с 10 по 13, а так же выведены отдельно в виде шести контактной колодки с подписью ICSP. Располагается колодка, как правило, в центральной правой части Arduino.

Прошивка Arduino Pro Mini в этом случае делиться на два этапа:

  1. Прошивка платы Arduino как ISP программатора.

Первым делом мы должны подготовить наш будущий программатор. Возьмем для примера всю туже Arduino UNO. Далее пошагово:

  1. Запускаем Arduino IDE.
  2. Файл - Примеры - 11.ArduinoISP - ArduinoISP.
  3. Инструменты - Плата - Arduino UNO.
  4. Инструменты - Порт - Выбираем COM-порт.
  5. Компилируем и заливаешь в Arduino UNO.
Arduino UNO (ISP)
Arduino Pro Mini
5V
VCC
GND
GND
10
RST
11 (MOSI)
11 (MOSI)
12 (MISO)
12 (MISO)
13 (SCK)
13 (SCK)

Теперь опять открываем Arduino IDE. Открываем в ней скетч который вы хотите залить в Pro Mini и выполняете следующие действия:

2. Инструменты - Плата - Arduino Pro Or Pro Mini
3. Инструменты - Процессор - ATmega168 (5V, 16 MHz)
4. Инструменты - Порт - Выбираете порт
5. Инструменты - Программатор - Arduino as ISP
6. Скетч - Загрузить через программатор

Как видите загружать скетч в этом режиме надо через специальное меню "Загрузить через программатор", а не через кнопку "Загрузить" на главной форме Arduino IDE. В этом и связано все неудобство. Если вы нажмете кнопку "Загрузить" как это делаете обычно, то вы зальете скетч в Arduino UNO, а не Arduino Pro Mini, что затрет там скетч программатора. Так же в этом режиме недоступен класс Serial, то есть отлаживать свой скетч обмениваясь сообщениями по COM-порту у вас так же не получится. Ну и еще одна ложка дегтя в том, что после данной перепрошивки, в большинстве случаев, перепрошить Arduino Pro Mini через переходник у вас так же больше не получиться. Исправляется это заливкой нового bootloader-а через меню "Инструменты" - "Записать Загрузчик".

Добавляем китайский Pro Mini в Arduino IDE

Как я уже говорил в данной статье, Китайские клоны порой оснащают процессорами которыми не оснащали официальные версии Arduino Pro Mini и как следствие при прошивке их вы можете увидеть следующую или подобную ошибку.

Avrdude: Expected signature for ATmega168 is 1E 94 06 Double check chip, or use -F to override this check. Найден неправильный микроконтроллер. Вы указали правильную плату в меню Инструменты -> Плата?

Исправляется это легко:

  • Для начала необходимо открыть папку в которой расположена Arduino IDE.
  • Затем переходим в следующую папку "Папка с Arduino IDE\hardware\arduino\avr\".
  • Ищем там файл "boards.txt" и открываем его в текстовом редакторе.
  • Ищем в файле следующую строку "pro.menu.cpu.16MHzatmega168.build.mcu=atmega168".
  • И заменяем ее на "pro.menu.cpu.16MHzatmega168.build.mcu=atmega168p".
  • Перезапускаем Arduino IDE и на этом все.
  • Если у вас к примеру 328 процессор то делаем все так же, только ищем строку с цифрами 328.

Заключение

В данной статье я привел аж три варианта загрузки скетчей в Arduino Pro Mini. Лично я использую второй. Мне он больше нравиться.

Что будете использовать вы - выбирать вам. Оставьте в комментарии какой вариант вы предпочитаете.

Успехов вам и удачи.

Пожалуйста, включите javascript для работы комментариев.

Общие сведения

Arduino Mini - это маленькое микропроцессорное устройство, ориентированное на использование с макетными платами или в приложениях, предъявляющих высокие требования к габаритным размерам. Первоначально устройство было спроектировано на базе микроконтроллера ATmega168, который в настоящее время заменен на микроконтроллер ATmega328 (). В состав устройства входит: 14 цифровых входов/выходов (из которых 6 могут использоваться в качестве ШИМ-выходов), 8 аналоговых входов и кварцевый резонатор на 16 МГц. Arduino Mini можно прошить с помощью специального USB-Serial адаптера или любого другого преобразователя интерфейсов USB-Serial либо RS232-Serial с TTL-уровнями напряжения.

В новой версии Arduino Mini (R5) обновлена печатная плата под микроконтроллер ATmega328, благодаря чему все компоненты теперь расположены на лицевой стороне платы. Помимо этого, добавлена кнопка сброса. При этом в новой версии Ардуино Mini расположение выводов полностью аналогично предыдущей версии R4.

Внимание: напряжение питания Arduino Mini не должно превышать 9В или не должно быть отрицательным. При несоблюдении этого условия плата может выйти из строя.

Характеристики

Микроконтроллер ATmega328
Рабочее напряжение
Напряжение питания 7-9В
Цифровые входы/выходы 14 (из которых 6могут использоваться в качестве ШИМ-выходов)
Аналоговые входы 8 (4 из которых на внешних выводах)
Максимальный ток одного вывода 40 мА
Flash-память 32 КБ (из которых 2 КБ используются загрузчиком)
SRAM 2 КБ
EEPROM 1 КБ
Тактовая частота 16 МГц

Программирование

Для прошивки Arduino Mini можно использовать специальный USB-Serial адаптер или любой другой преобразователь интерфейсов USB-Serial либо RS232-Serial с TTL-уровнями напряжения. Инструкции по прошивке см. на странице "Начало работы с Arduino Mini" .

ATmega328 в Arduino Mini выпускается с прошитым загрузчиком , позволяющим загружать в микроконтроллер новые программы без необходимости использования внешнего программатора. Взаимодействие с ним осуществляется по оригинальному протоколу STK500 ( , ).

Тем не менее, микроконтроллер ATmega328 можно прошить и через разъем для внутрисхемного программирования ICSP (In-Circuit Serial Programming), не обращая внимания на загрузчик; информацию о распиновке разъема ICSP для прошивки Mini через загрузчик см. на соответствующей странице . Инструкции по использованию внешнего программатора для прошивки контроллера см. .

Входы и выходы

Каждый из 14 цифровых выводов Arduino Mini может работать в качестве входа или выхода. Уровень напряжения на выводах ограничен 5В. Максимальный ток, который может отдавать или потреблять один вывод, составляет 40 мА. Все выводы сопряжены с внутренними подтягивающими резисторами (по умолчанию отключенными) номиналом 20-50 кОм. Выводы 3, 5, 6, 9, 10 и 11 могут выводить аналоговые величины в виде ШИМ-сигнала; для получения дополнительной информации об этом см. описание функции analogWrite() . Выводы 0 и 1 используются при подключении устройства к компьютеру через адаптер Mini USB (или похожий). Подключение к этим выводам каких-либо внешних цепей может приводить к нарушению USB-соединения с компьютером или препятствовать процессу загрузки в микроконтроллер новых программ.

В Arduino Mini есть 8 аналоговых входов, каждый из которых может представить аналоговое напряжение в виде 10-битного числа (1024 различных значения). Входы 0 - 3 выведены на внешний разъем платы; для подключения к входам 4 - 7 на плате предусмотрены отверстия и распаечные площадки. По умолчанию, измерение напряжения осуществляется относительно диапазона от 0 до 5 В. Однако, верхнюю границу этого диапазона можно изменить, используя вывод AREF и несколько низкоуровневых команд.

Расположение выводов

Примечание: распиновка выводов в Arduino Mini версий 03 и 04 отличается. Убедитесь, что вы используете схему, соответствующую вашей версии Ардуино.