Главная · Лайфхаки · Информационный процесс прием в природе. Информационные процессы. Информационные процессы в живой природе, обществе, технике. Понятие информации. Виды информации. Роль информации в живой природе и в жизни людей

Информационный процесс прием в природе. Информационные процессы. Информационные процессы в живой природе, обществе, технике. Понятие информации. Виды информации. Роль информации в живой природе и в жизни людей

Получение и преобразование информации является необходимым условием жизнедеятельности любого организма. Даже простейшие одноклеточные организмы постоянно воспринимают и используют информацию, например о температуре и химическом составе среды для выбора наиболее благоприятных условий существования. Живые существа способны не только воспринимать информацию из окружающей среды с помощью органов чувств, но и обмениваться ею между собой.

Например, в молекулах ДНК хранится наследственная информация, которая передается от родителей к детям. Эта информация обрабатывается организмом в процессе его развития.

Человек также воспринимает информацию с помощью органов чувств, а для обмена информацией между людьми используются языки. За время развития человеческого общества таких языков возникло очень много. Без него, без обмена информацией между людьми было бы невозможным возникновение и развитие общества.

Информационные процессы характерны не только для живой природы, человека и общества, но и для техники. Такая техника моделирует некоторые действия человека и способна в этих случаях частично (а иногда и полностью) заменить его. Человеком разработаны технические устройства, в частности компьютеры, которые специально предназначены для автоматической обработки информации.

Например, информация о товаре в супермаркете хранится в компьютерной базе данных, помечается (обрабатывается) штрих-кодом, передается в кассу (цена) или на склад (количество товара). Другой пример – кварцевые часы. В них вместо маятника, пружин и шестеренок используется микропроцессор, кварцевый кристалл и батарейка. Только для того, чтобы показывать время, микропроцессор должен обрабатывать около 30000 элементов информации в секунду.

Деятельность человека, связанную с процессами получения, преобразования, накопления и передачи информации, называют информационной деятельностью.

В результате научно-технического прогресса человечество создавало все новые средства и способы сбора, хранения, передачи информации.

Компьютеры в производстве используются на всех этапах: от конструирования отдельных деталей изделия, его дизайна до сборки и продажи. Система автоматизированного производства (САПР) позволяет создавать чертежи, сразу получая общий вид объекта, управлять станками по изготовлению деталей. Гибкая производственная система (ГПС) позволяет быстро реагировать на изменение рыночной ситуации, оперативно расширять или сворачивать производство изделия или заменять его другим. Легкость перевода конвейера на выпуск новой продукции дает возможность производить множество различных моделей изделия. Компьютеры позволяют быстро обрабатывать информацию от различных датчиков, в том числе от автоматизированной охраны, от датчиков температуры для регулирования расходов энергии на отопление, от банкоматов, регистрирующих расход денег клиентами, от сложной системы томографа, позволяющей « увидеть» внутреннее строение органов человека и правильно поставить диагноз. Компьютер находится на рабочем столе специалиста любой профессии.

Системы управления

Изучением процессов управления занимается наука кибернетика . Начало кибернетике положил американский ученый Норберт Виннер.

Под управлением понимается целенаправленное взаимодействие объектов, одни из которых управляют, а другие являются управляемыми.

Управление является сложным информационным процессом, включающим в себя получение, хранение, преобразование и передачу информации.

Есть ли информация в неживой природе, если не брать во внимание разнообразную технику, созданную человеком? Ответ на этот вопрос зависит от определения самого понятия. Значение термина «информация» на протяжении истории человечества неоднократно дополнялось. На определение оказывало влияние на развитие научной мысли, прогресс технологий и накопленный веками опыт. Информация в неживой природе возможна, если рассматривать это явление с точки зрения общей терминологии.

Один из вариантов определения понятия

Информация в узком смысле — это сообщение, переданное в виде того или иного сигнала от человека к человеку, от человека к автомату или от автомата к автомату, а также в растительном и животном мире от особи к особи. При таком подходе ее существование возможно только в живой природе или в социотехнических системах. К ним в том числе можно отнести такие примеры информации в неживой природе в археологии, как наскальные рисунки, глиняные таблички и так далее. Носитель сведений в этом случае — предмет, явно не относящийся к живой материи или к технике, однако без помощи того же человека данные не были бы зафиксированы и сохранены.

Субъективный подход

Существует еще один способ субъективна по природе и возникает лишь в сознании человека, когда он наделяет окружающие его предметы, события и так далее неким смыслом. Эта идея имеет интересные логические следствия. Получается, если нет людей — нет и сведений, нигде, в том числе отсутствует и информация в неживой природе. Информатика в таком варианте определения становится наукой о субъективном, но не реальном мире. Впрочем, не будем глубоко зарываться в эту тему.

Общее определение

В философии информация определяется как нематериальная форма движения. Она присуща любому объекту, поскольку он обладает неким смыслом. Недалеко от этого определения уходит и физическое понимание термина.

Одно из основных понятий в научной картине мира — энергия. Ею обмениваются все материальные объекты, причем постоянно. Изменение первоначального состояния у одного из них вызывает изменения в другом. В физике подобный процесс рассматривается как передача сигнала. Сигнал, по сути, тоже сообщение, переданное одним предметом и полученное другим. Это и есть информация. Согласно подобному определению, ответ на заданный в начале статьи вопрос однозначно положительный. Информация в неживой природе — это разнообразные сигналы, передающиеся от одних объектов к другим.

Второй закон термодинамики

Более короткое и точное определение: информация — это мера упорядоченности системы. Тут стоит вспомнить один из Согласно второму началу термодинамики, замкнутые системы (это такие, которые не взаимодействуют никак с окружающей средой) всегда переходят из упорядоченного состояния в хаотичное.

Для примера проведем мысленный эксперимент: поместим в одной половине замкнутого сосуда газ. Через некоторое время он заполнит весь предоставленный объем, то есть перестанет быть упорядоченным в той мере, в какой был. При этом информация в системе уменьшится, поскольку она является мерой упорядоченности.

Информация и энтропия

Стоит отметить, что в современном понимании Вселенная не является замкнутой системой. Для нее характерны процессы усложнения структуры, сопровождающиеся повышением упорядоченности, а значит, и количества информации. Согласно теории Большого взрыва, так было с момента образования Вселенной. Первыми появились элементарные частицы, затем молекулы и более крупные соединения. Позже начали формироваться звезды. Все эти процессы характеризуются упорядочиванием структурных элементов.

С этими нюансами тесно связано прогнозирование будущего Вселенной. Согласно второму закону термодинамики, ее ожидает тепловая смерть в результате возрастания энтропии, величины, противоположной информации. Ее можно определить как меру неупорядоченности системы. гласит, что в замкнутых системах энтропия всегда растет. Однако современные знания не могут дать точного ответа на вопрос, насколько он применим ко всей Вселенной.

Особенности информационных процессов в неживой природе в замкнутой системе

Все примеры информации в неживой природе объединены общими особенностями. Это одноступенчатость процессов, отсутствие цели, потеря количества в источнике при возрастании в приемнике. Рассмотрим названные свойства подробнее.

Информация в неживой природе представляет собой меру свободой энергии. Другими словами, она характеризует способность системы совершить работу. При отсутствии внешнего воздействия каждый раз при совершении химической, электромагнитной, механической или другой работы происходит необратимая потеря свободной энергии, а вместе с ней и информации.

Особенности информационных процессов в неживой природе в открытой системе

При внешнем воздействии некая система может получить информацию или ее часть, потерянную другой системой. При этом в первой появится количество свободной энергии, достаточное, чтобы совершить работу. Хороший пример — намагничивание так называемых ферромагнетиков (веществ, способных при определенных условиях быть намагниченными при отсутствии внешнего магнитного поля). Они приобретают подобное свойства в результате удара молнии или же в присутствии других магнитов. Намагничивание при этом становится физическим выражением приобретения системой некоторого количества информации. Работу в данном примере будет осуществлять магнитное поле. в этом случае одноступенчатые и не имеют цели. Последнее свойство больше других отличает их от аналогичных явлений в живой природе. Отдельные фрагменты, например, процесса намагничивания не преследуют никаких глобальных целей. В случае живой материи такая цель есть — это синтез биохимического продукта, передача наследственного материала и так далее.

Закон невозрастания информации

Еще одна особенность в неживой природе заключается в том, что возрастание информации в приемнике всегда сопряжено с потерей ее в источнике. То есть в системе без внешнего воздействия количество информации никогда не увеличивается. Это положение является следствием закона неубывания энтропии.

Нужно отметить, что некоторые ученые рассматривают информацию и энтропию как тождественные понятия с обратным знаком. Первая представляет собой меру упорядоченности системы, а вторая — хаотичности. С такой точки зрения, информация становится отрицательной энтропией. Однако подобного мнения придерживаются далеко не все исследователи проблемы. Кроме того, следует отличать энтропию термодинамическую и информационную. Они являются частью разных научных знаний (физики и теории информации соответственно).

Информация в микромире

Изучает тему «Информация в неживой природе» 8 класс школы. Ученики к этому моменту еще мало знакомы с квантовой теорией в физике. Однако уже знают, что материальные объекты можно разделить на макро- и микромир. Последний представляет собой такой уровень материи, где существуют электроны, протоны, нейтроны и другие частицы. Здесь законы классической физики чаще всего неприменимы. Между тем информация существует и в микромире.

Не будем углубляться в квантовую теорию, но отметить несколько моментов все же стоит. В микромире как таковой энтропии не существует. Однако и на этом уровне при взаимодействии частиц происходят потери свободной энергии, той самой, которая необходима для совершения работы любой системой и мерой которой является информация. Если уменьшается свободная энергия, уменьшается и информация. То есть в микромире закон невозрастания информации также соблюдается.

Живая и неживая природа

Любые примеры информации в по информатике изучаемые в восьмом классе и не имеющее отношение к технике, объединены отсутствием цели, для достижения которой информация хранится, перерабатывается и передается. Для живой материи все иначе. В случае живых организмов существует основная цель и промежуточные. В итоге весь процесс получения, обработки, передачи и хранения информации необходим для передачи наследственного материала потомкам. Промежуточными целями является его сохранение при помощи самых разных биохимических и поведенческих реакций, к которым можно отнести, например, поддержание гомеостаза и ориентационное поведение.

Примеры информации в неживой природе говорят об отсутствии подобных свойств. Гомеостаз, кстати, минимизирует последствия закона невозрастания информации, который приводит к разрушению объекта. Наличие или отсутствие описанных целей — одно из главных отличий живой и неживой природы.

Итак, можно найти массу примеров на тему «информация в неживой природе»: картинки на стенах древних пещер, работа компьютера, рост кристаллов горного хрусталя и так далее. Однако, если не брать во внимание сведения, созданные человеком (различные изображения и тому подобное) и технику, объекты неживой природы сильно отличаются по свойствам информационных процессов, протекающих в них. Перечислим их еще раз: одноступенчатость, необратимость, отсутствие цели, неизбежная потеря информации в источнике при передаче ее приемнику. Информация в неживой природе определяется как мера упорядоченности системы. В замкнутой системе при отсутствии внешнего воздействия того или иного рода соблюдается закон невозрастания информации.

Примерно 3,5 миллиарда лет назад на Земле возникла жизнь. С тех пор идет саморазвитие, эволюция живой природы, т.е. повышение сложности и разнообразия живых организмов. Живые системы (одноклеточные, растения и животные) являются открытыми системами, т.к. потребляют из окружающей среды вещество и энергию и выбрасывают в неё продукты жизнедеятельности также в виде вещества и энергии. Живые системы в процессе развития способны повышать сложность своей структуры, т.е. увеличивать информацию, понимаемую как меру упорядоченности элементов системы (например, «Фотосинтез растений») Нормальное функционирование живых организмов невозможно без получения и использования информации об окружающей среде. Целесообразное поведение живых организмов строится на основе получения информационных сигналов (звук, свет, запах и др.).

Информация в природе, обществе и технике. 3. Человек: информация и информационные процессы. Примерно 40 тысяч лет назад в процессе эволюции живой природы появился человек разумный (перевод с латинского «homo sapiens»). Человек существует в «море» информации, он постоянно получает информацию из окружающего мира с помощью органов чувств, хранит её в своей памяти, анализирует с помощью мышления и обменивается информацией с другими людьми. Наибольшее количество информации (около 90%) человек получает с помощью зрения, около 9% - с помощью слуха и только 1% - с помощью других органов чувств (обоняния, осязания и вкуса). Полученную информацию в форме зрительных, слуховых и других образов человек хранит в памяти, обрабатывает с помощью мышления и использует для управления своим поведением и достижения поставленных целей.

Информация в природе, обществе и технике. 3. Человек: информация и информационные процессы. С самого начала человеческой истории возникла потребность накопления информации для её передачи во времени из поколения в поколение и передачи в пространстве на большие расстояния. Процесс накопления информации начался с изобретения в IV тысячелетии до нашей эры письменности и первых носителей информации (шумерских глиняных табличек и древнеегипетских папирусов). Середина XV века – изобретение книгопечатания. До настоящего времени в качестве основного носителя информации используется бумага. В прошлом веке широкое распространение для хранения графической информации получила фото- и кинопленка. В настоящее время – магнитные носители.

Информация в природе, обществе и технике. 4. Информация и информационные процессы в технике. Функционирование систем управления техническими устройствами связано с информационными процессами, т.е. процессами приема, хранения, обработки и передачи информации. Системы управления могут выполнять различные функции. Например, такие системы могут поддерживать определенное состояние технической системы (холодильник, утюг, кондиционер и т.д.). Системы управления могут обеспечивать функционирование технической системы по заданной программе (стиральная машина-автомат, видеомагнитофон и т.д.). В некоторых случаях главную роль в процессе управления выполняет человек, в других управление осуществляет встроенный в техническое устройство микропроцессор или подключенный компьютер. Например, управление полетом самолета может осуществлять летчик или в режиме автопилота бортовой компьютер.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

К данному материалу относятся разделы:

Информация и информационные процессы в живой природе

Понятие информации. Виды информации. Роль информации в живой природе и в жизни людей

Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации.

Текстовый редактор

Электронная таблица

Система управления базами данных. Назначение и основные возможности.

«Линейная» алгоритмическая структура. Команда присваивания.

Алгоритмическая структура ветвление. Команды ветвления. Привести пример

Алгоритмическая структура цикл. Команды повторения.

Понятие алгоритма. Исполнитель алгоритма. Система команд исполнителя (на примере учебного исполнителя). Свойства алгоритма. Способы записи алгоритмов; блок-схемы.

Основные алгоритмические структуры: следование, ветвление, цикл; изображение на блок-схемах. Разбиение задачи на подзадачи. Вспомогательные алгоритмы.

Понятие файла и файловой системы организации данных (папка, иерархическая структура, имя файла, тип файла, параметры файла). Основные операции с файлами и папками, выполняемые пользователем. Понятие об архивировании и защите от вирусов.

Технологии работы с текстовыми документами. Текстовые редакторы и процессоры: назначение и возможности. Основные структурные элементы текстового документа. Шрифты, стили, форматы. Основные приемы редактирования документа. Встраиваемые объекты. Понятие гип

Технологии работы с графической информацией. Растровая и векторная графика. Аппаратные средства ввода и вывода графических изображений. Прикладные программы работы с графикой. Графический редактор. Основные инструменты и режимы работы

База данных (БД) - это информационная модель, позволяющая в упорядоченном виде хранить данные о группе объектов, обладающих одинаковым набором свойств.

Память ЭВМ. Виды памяти. Основная и дополнительная часть оперативной памяти. Стандарты емкости накопителей. Логические имена: носителей, клавиатуры, принтера, монитора, портов ввода-вывода. Энергозависимая память.

Программы оболочки и файловые менеджеры: виды, особенности, назначение. Операционные среды: виды, особенности, назначение, основные отличия от оболочек

Определения: каталог, файл. Файловые системы. Стандарты в наименовании файлов. Типовые расширения имен файлов. Логические имена носителей информации. Правильная запись маршрута - примеры

В живой природе распространены гораздо больше, чем это может показаться на первый взгляд. С ними связано опадение листвы осенью, прорастание цветов весной и другие привычные явления. Способность хранить, передавать и получать информацию — одна из особенностей живой материи. Без нее невозможен нормальный обмен веществ, приспособление к условиям окружающей среды, обучение и так далее. Информационные процессы в неживой природе также существуют, но отличаются несколькими особенностями и в первую очередь выступают в качестве меры упорядоченности системы.

Вездесущая информация

Что такое информация? На сегодняшний день существует несколько вариантов определения этого термина. Каждая наука, имеющая дело с информацией (к таким относятся все разделы знания), использует свое понимание. Общее определение вывести довольно сложно. Интуитивно каждый человек понимает под информацией некие сведения и знания об окружающем мире. В математических науках к ним добавляются данные, полученные путем умозаключений и после решения определенных задач. В физике информация — это мера упорядоченности системы, она противоположна энтропии и свойственна любым материальным объектам. В философии она определяется как нематериальная форма движения.

Свойства

Согласно большинству формулировок, информация снижает неопределенность, предоставляя сведения об окружающем мире и способствуя приведению системы в одно из множества состояний. Это легко понять, проанализировав процесс принятия решения. Человек часто не может сделать выбор между несколькими вариантами поведения, пока не получит дополнительных сведений о ситуации. Для того чтобы информация привела к правильному решению, она должна обладать набором характеристик, это такие как:

  • понятность;
  • полезность;
  • полнота;
  • объективность;
  • достоверность;
  • актуальность.

Понятие информационного процесса

Все многообразные действия, которое можно совершать с информацией, называются информационными процессами. К ним можно отнести получение и поиск, передачу и копирование, упорядочивание и фильтрование, защиту и архивирование.

Информационные процессы в живой природе встречаются буквально на каждом шагу. Любой организм, одноклеточный или многоклеточный, постоянно получает сведения об окружающей среде, которые приводят к разным изменениям в поведении или внутренней среде. Без сбора, обработки и хранения информации трудно представить себе жизнедеятельность какого-либо существа. Самый простой пример — человеческое мышление. По своей сути, оно представляет собой не что иное, как процесс постоянной обработки информации об окружающей среде, состоянии тела, а также сведений, хранящихся в памяти, и так далее.

Информационная система

Все в природе протекают в рамках определенной системы. В нее входит три составляющие:

  • передатчик (источник);
  • приемник (получатель);
  • канал связи.

Передатчиком может быть любой организм или окружающая среда. Например, сужение или расширение зрачка происходит под действием света. Источником информации в таком процессе служит пространство вокруг человека или животного. Получателем в этом случае будет сетчатка глаза.

Называется среда, обеспечивающая доставку информации. В этом качестве может выступать звуковая или зрительная волна, а также колебательные движения среды другой природы.

Основные информационные процессы

Всю совокупность действий, которые можно совершать с информацией, объединяют в несколько категорий:

  • передача;
  • хранение;
  • сбор;
  • обработка.

Компьютер — великолепный пример протекания информационных процессов. Он получает данные и, обрабатывая их, выдает нужные сведения или изменяет работу системы, ищет нужные факты согласно заданным критериям, служит то источником, то приемником информации. Прообразом компьютера является человеческий мозг. Он тоже постоянно взаимодействует с информационным потоком, однако процессы, протекающие в его глубинах, многократно превышают по сложности те, что свойственны машине.

Некоторые нюансы передачи информации

Как уже было сказано выше, информационные процессы в живой природе протекают в системе, состоящей из источника, канала и приемника. В процессе передачи данные в виде набора сигналов по каналу попадают к получателю. При этом физический смысл сигналов часто не идентичен смыслу сообщения. Для правильной интерпретации информации используется согласованный свод правил и договоренностей. Они необходимы для одинакового понимания содержания сообщения на всех этапах работы с ним. К числу таких правил можно отнести расшифровку и других аналогичных систем, правила прочтения дорожных знаков, алфавиты и так далее.

На примере любого языка легко заметить, что смысл информации завит не только от характеристик сигналов, но и от их расположения. При этом смысл одного и того же переданного сообщения каждый раз может несколько видоизменяться в зависимости от особенностей получателя. Если сведения передаются человеку, их интерпретация определяется разными факторами, от его жизненного опыта до физиологического состояния. Кроме того, одно и то же сообщение может быть передано разными способами, с использованием различных алфавитов, языковых систем или каналов связи. Так, акцентировать внимание на чем-то можно при помощи надписи «Внимание!», использования красного цвета или нескольких восклицательных знаков.

Шум

Исследование информационных процессов включает в себя и изучение такого понятия, как шум. Считается, что если сообщение не несет полезных сведений, то оно несет шум. Так может определяться не только абсолютно бесполезная с практической точки зрения информация, но и сообщения, состоящие из сигналов, которые получатель не в состоянии интерпретировать. Шумом можно назвать и данные, потерявшие актуальность. То есть любая информация со временем или в силу разных обстоятельств может превратиться в шум. Не менее вероятным является и обратный процесс. Например, текст на исландском языке будет бесполезен для не знакомого с ним человека и обретает смысл в случае появления переводчика или словаря.

Человек и общество

Информационные процессы в обществе принципиально не отличаются от таковых на других уровнях организации. Хранение, передача и обработка сведений в обществе осуществляется посредством специальных социальных институтов и механизмов. Одна из функций общества — трансляция знаний. Обеспечивается она передачей информации от поколения к поколению. В некотором смысле этот процесс аналогичен копированию наследственного материала.

Информационные процессы в обществе обеспечивают его сплоченность. Отсутствие передачи накопленных знаний, в том числе о нормах и законах, приводит к разделению единого формирования на индивидов, действующих только исходя из биологически заложенных предпосылок.

Хранение и обработка

В обществе, как и в отдельном организме, трудно представить передачу информации без ее хранения. Базы данных, библиотеки, архивы и музеи содержат огромное количество сведений. Часто, прежде чем передать их ученикам, преподаватели занимаются обработкой информации. Они классифицируют, фильтруют данные, выбирают отдельные факты согласно программе обучения и так далее.

История знает несколько кардинальных изменений, связанных с обработкой информации и приведших ко все большему накоплению знаний. К таким можно отнести изобретение письменности, книгопечатания, компьютера, открытие электричества. Изобретение ЭВМ стало логичным следствием накопления знаний. Компьютер способен вмещать и обрабатывать огромные массивы информации, сохранять их и передавать без потерь.

Явления живой природы: примеры информационных процессов

Информацию, поступающую из окружающей среды, способны воспринимать не только люди. Животные и растения, отдельные клетки и микроорганизмы улавливают сигналы и реагируют на них тем или иным способом. Опадение листвы осенью и рост побегов весной, принятие определенной позы собакой при приближении соперника, выделение нужных веществ в цитоплазму амебы... Все эти явления живой природы — примеры изменений в системе после поступления информации.

В случае растений источником сведений становится окружающая среда. Передача информации осуществляется также между клетками тканей. Для животного мира характерен обмен сведениями и от особи к особи.

Один из ключевых моментов в живой природе — передача наследственной информации. В этом процессе можно вычленить источник (ДНК и РНК), алфавит с набором правил его прочтения (генетический код: аденин, тимин, гуанин, цитозин), этап обработки информации (транскрипция ДНК) и так далее.

Кибернетика

Тема «Информационные процессы» - одна из ведущих в кибернетике. Это наука об управлении и связи в обществе, живой природе и технике. Основоположником кибернетики считается Норберт Винер. Исследование информационных процессов в этой науке необходимо для понимания особенностей управления той или иной системой. В кибернетике выделяют управляющий и управляемый объект. Они сообщаются посредством прямой и обратной связи. От управляющего объекта (например, человека) поступают сигналы (информация) к управляемому (компьютер), в результате чего последний производит какие-то действия. Затем по каналу обратной связи к управляющему поступает информация о произошедших изменениях.

Кибернетические процессы связаны с жизнедеятельностью любого живого организма. Принципы управления лежат и в основе общественных, а также компьютерных систем. Собственно концепция кибернетики родилась в процессе поиска общего подхода к анализу деятельности живых организмов и различных автоматов и осознания схожести поведения социума и природных сообществ.

Таким образом, информационные процессы в живой природе — одна из характеристик организмов любого уровня сложности. Они дополняются принципами прямой и обратной связи и способствуют поддержанию постоянства внутренней среды и своевременную реакцию на изменения в окружающем мире. Информационные процессы в неживой природе (за исключением автоматов, созданных человеком) протекают одноступенчато. Важное, не отмеченное выше их отличие, — сведения, переданные из источника, из него исчезают. В живой природе и автоматах такого явления не наблюдается. В подавляющем большинстве случаев переданная информация по-прежнему сохраняется в источнике.

Понятие информационного процесса используется различными науками. Его можно назвать междисциплинарным. Теория информации на сегодняшний день применима для объяснения самых разных процессов.

Информация – важнейшая сущность окружающего мира.

Весь окружающий нас мир состоит из трёх сущностей – вещества, энергии, информации. Вещество – это весь материальный мир: вода и воздух, горы и травы, хлеб и металл. Наконец, мы сами, наше тело, мускулы и нервы, кровь и кожа – это тоже вещество, атомы и молекулы.

Энергия приводит наш мир в движение. Энергия химических реакций даёт силу мускулам, энергия солнечных лучей поднимает хлеб, электрическая энергия движет поезда и зажигает лампочки в наших домах.

Всё, что не вещество и не энергия – это информация, – третья важнейшая сущность нашего мира. Информация – это не только сведения из книг, газет или теле- и радиопередач, но и данные, которые хранятся в рельефе ключа, в структуре сложной биологической молекулы, в радиосигналах, передаваемых на космический корабль. Информация, заключённая в рельефе ключа, позволяет открыть с его помощью определённый («свой») замок; информация, передаваемая в радиосигналах с Земли, включает двигатель на космическом корабле и переводит корабль на другую орбиту. Информация, хранящаяся в структуре биологической молекулы, позволяет живой клетке производить определенные белки для новых тканей или для уничтожения попавших в организм микробов.

Получение и преобразование информации является условием жизнедеятельности любого организма. Даже простейшие одноклеточные организмы постоянно воспринимают и используют информацию, например, о температуре и химическом составе среды для выбора наиболее благоприятных условий существования.

Человек воспринимает окружающий мир (получает информацию) с помощью органов чувств: зрения, слуха, обоняния, осязания, вкуса. Чтобы правильно ориентироваться в мире, он запоминает полученные сведения (хранит информацию), принимает решения (обрабатывает информацию). В процессе общения с другими людьми человек передает и принимает информацию. Человек живёт в мире информации.

Процессы, связанные с получением, хранением, обработкой и передачей информации, называются информационными процессами.

Более подробно об информационных процессах в природе, обществе и технике поговорим на следующем уроке, а сейчас пора сказать несколько слов о самом слове «информация», что оно означает и какими свойствами обладает информация.

Объекты живой природы, в отличие от неживой, обладают свойством обмена информацией и реагирования на неё. Так, например, горы подвержены эрозии из-за неблагоприятных влияний ветра, солнца, дождя но они не могут принять эту информацию к сведению и использовать её для выживания, в отличие, например, от зайцев, которые меняют свою окраску на белую, получив информацию из окружающего мира о наступлении зимы. Пчела летит на запах цветка, являющийся для неё информацией, летучие мыши ориентируются в пространстве, получая информацию с помощью ультразвуковой локации. Собака обладает прекрасными способностями к обучению. Она получает и обрабатывает следующую информацию: если она совершает действия, которые от неё требует хозяин, он поощряет её. Чтобы достичь желаемого, собака должна отбирать внешнюю информацию, необходимую для дальнейших действий. Она, например, начинает связывать понятие «свой» с членами семьи хозяина и понятие «чужой» со всеми остальными людьми.



Использование понятия информации оказало существенное влияние на развитие современной биологии, особенно таких её разделов, как нейрофизиология и генетика. Генетическая информация передается по наследству и хранится во всех клетках живых организмов. Гены представляют собой сложные молекулярные структуры, содержащие информацию о строении живых организмов. Последнее обстоятельство позволило проводить научные эксперименты по клонированию, т.е. созданию точных копий организмов из одной клетки.